

Chapter 12

526

Property IE Firefox Safari Chrome Opera¹

transform:rotate3d() 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

transform:scale3d() 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

transform:matrix3d() 10 -ms- 10 -moz- 5 -webkit- 12 -webkit- -

transform:perspective() 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

Perspective 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

perspective-origin 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

transform-origin: X Y Z; 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

transform-style 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

backface-visibility 10 -ms- 10 -moz- 4.0.5 -webkit- 12 -webkit- -

13D transitions are being worked on for Opera, but they’re not in Opera Next at the time of writing

Polyfills, fallbacks, and Internet Explorer’s filter property

If you choose to, you can extend the browser support of CSS 2D transforms. One option is to use Internet
Explorer’s proprietary CSS filter property, basically an ugly precursor to translate: matrix(), allowing you to
support Internet Explorer 6-8.7 Enter your prefix-less transforms CSS into the Transforms Translator
(http://j.mp/ie-transforms, www.useragentman.com/IETransformsTranslator/) by Zoltan Hawryluk and Zoe

7 Note that IE’s filters animate … poorly — test thoroughly if you use them.

Transforms, Transitions, and Animation

527

Mickley Gillenwater, and it will output the equivalent IE filter-based transform, along with vendor prefixed
transforms for other browsers. You can then add the filter CSS to an IE-only stylesheet and include via an
IE conditional comment.

If you choose to go the polyfill8 route, here are two JavaScript polyfills that convert 2D transforms CSS to
Internet Explorer filter properties on the fly. Of course, if the user has JavaScript disabled nothing
happens—caveat emptor.

 Transformie (http://transformie.com/) is a jQuery plug-in by Paul Bakaus that adds basic
transform support to IE6-8.

 cssSandpaper (http://j.mp/csssandpaper, www.useragentman.com/blog/2010/03/09/
cross-browser-css-transforms-even-in-ie/) by Zoltan “Du Lac” Hawryluk adds support for IE6-8
and Opera 10.0+, plus box-shadow, linear gradients, and radial gradients.

Finally, transforms (and transition animations) can also be done via JavaScript, for example using jQuery’s
effects (http://j.mp/jq-effects, http://api.jquery.com/category/effects/). CSS 2D and 3D transforms are
detected by Modernizr, so you can set up fallback content—either extending behaviors to non-supporting
browsers via a polyfill for 2D transforms or using a suitable non-transforming alternative, such as an
image. At the time of writing, there are no polyfills for 3D transforms.

CSS transforms gotchas

As CSS 2D and 3D transforms have only recently been implemented, there are still quirks and bugs. Here
are some tricks and tips for common issues.

 WebKit browsers don’t transform display: inline; elements. Opera 11+ and Firefox 4+ work as
expected. The workaround is to use display: inline-block;.

 When using transform: rotate(); in iOS, the straight edge of a rotated image can appear aliased.
Thierry Koblentz found that using background-clip: padding-box; solves this.

 As already mentioned, in Firefox 3.5-9 the translate values in transform: matrix(); were
implemented as lengths, not the spec’s numbers. You’ll need to add px for Firefox only. From
Firefox 10 both types of values are supported. See transform: matrix(); for more information.

 Transformed text is not anti-aliased in Opera 11.60

8 As mentioned in Chapters 2 and 7, a polyfill adds support for something to a browser that doesn’t support it natively,
typically using JavaScript.

http://transformie.com/
http://j.mp/csssandpaper
http://www.useragentman.com/blog/2010/03/09/
http://j.mp/jq-effects
http://api.jquery.com/category/effects/

Chapter 12

528

 3D transforms disable sub-pixel anti-aliasing in WebKit browsers for performance reasons. In
Safari, the rendering is still ok, but it can be noticeable in Chrome. Also in Chrome, this can
disable it on elements that aren’t themselves 3D transformed, and these will have rougher anti-
aliasing than those that are. Dave DeSandro found that adding a background color to affected
elements re-enables sub-pixel anti-aliasing in Chrome 16.

 There are some issues when transitioning or animating transforms, such as browser bugs when
transitioning between transform states with different units. We’ll address these issues in the
upcoming sections.

CSS transforms in summary

While the transformations and associated properties can seem overly simple on the surface, combining
them together allows us to do some impressive manipulations. For example, Dirk Weber’s CSS Warp
(http://j.mp/csswarp, http://csswarp.eleqtriq.com/) in Figure 12-16 is a “text to path” tool made with CSS
transforms.

Figure 12-16. CSSWarp, which uses CSS transforms to place text on a path.

http://j.mp/csswarp
http://csswarp.eleqtriq.com/

Transforms, Transitions, and Animation

529

However, the magic really starts when using transformations together with transitions, animation, and
JavaScript. Hakim El Hattab’s 3D carousel slideshow (http://j.mp/3d-slideshow,
http://hakim.se/inc/components/slideshow/) is a beautiful example of 3D transformations and transitions
with a little JavaScript. It even works on the iPhone and iPad, which have 3D transform support.

Although they are still comparatively new, we think it’s time to start using 2D transforms today—where
appropriate—for subtle improvements to user experience. The use of 2D transforms for more than
progressive enhancement, or any use of 3D transforms, is probably premature unless you have a suitable
audience. Make sure to test thoroughly, as support is relatively recent. Despite this (and the occasional
browser bug), CSS transforms are great for adding some subtle flavor, and if your user stats support, it
can play a more central role, for example on sites for iOS devices. If nothing else, they’re a taste of the
not-yet-widely-distributed future and lots of fun to play with!

Moving right along, let’s see how we can change elements (including CSS transformed ones) over time
with CSS transitions and CSS animations.

CSS transitions and CSS animations: compare and
contrast

These specifications both allow us to “interpolate CSS property values” or animate the changing of an
element’s property’s value over time. We’ll cover both in detail, but to understand the differences, let’s start
with a quick comparison. The following is what the CSS3 Animations specification says:

CSS Transitions provide a way to interpolate CSS property values when they change as
a result of underlying property changes. This provides an easy way to do simple
animation, but the start and end states of the animation are controlled by the existing
property values, and transitions provide little control to the author on how the animation
progresses.

[CSS Animations] introduces defined animations, in which the author can specify the
changes in CSS properties over time as a set of keyframes. Animations are similar to
transitions in that they change the presentational value of CSS properties over time.

— CSS Animations specification (http://j.mp/css3-animations,
http://dev.w3.org/csswg/css3-animations/#introduction)

While there are a lot of similarities—for example, both operate on the same “animatable” properties and
use the same timing functions—for us these are the major differences:

http://j.mp/3d-slideshow
http://hakim.se/inc/components/slideshow/
http://j.mp/css3-animations
http://dev.w3.org/csswg/css3-animations/#introduction

Chapter 12

530

 CSS transitions can be triggered by a CSS change in state and JavaScript. CSS animations play
by default once declared, although you can also trigger them by a CSS change in state9 and
JavaScript.

 CSS transitions apply a transition to an existing instant change. CSS animations add styles to an
element and animate using them.

 CSS transitions occur between two intrinsic styles,10 the element’s intrinsic style before and after
the transition is triggered (such as non-:hover and :hover values). CSS animations animate from
the element’s intrinsic state and between (multiple) keyframes. By default, the element will return
to its intrinsic state when the animation ends.

 CSS transitions are simple, with wider browser support. CSS animations are more powerful and
complex, with less browser support.

For future reference, Table 12-4 summarizes the differences.

Table 12-4. A Comparison of CSS Transitions and CSS Animations

 CSS Transitions CSS Animations

Properties One, many (same properties)

Enumerating properties Individually, all Individually when declaring values in
keyframes

Timing functions Yes (same functions)

Delay Yes (positive/negative)

CSS to animate Element’s styles pre- & post-change
of state (2 states)

Element’s intrinsic state, rules in
keyframes (2 or more states)

9 An example of a change of state is mousing over an element with :hover.

10 An element’s intrinsic style is the CSS styles it has before a transition or animation is applied.

Transforms, Transitions, and Animation

531

 CSS Transitions CSS Animations

Applied by CSS change in state, JavaScript Being declared, CSS change in
state, JavaScript

Fallback Change of state is instant Nothing happens

Repeatable No Yes

CSS transitions are great for a simple enhancement when you need to animate between two states. CSS
animations can do everything CSS transitions do plus more, but with their power comes a little more
complexity and CSS to write. Let’s examine both in detail. First up, CSS transitions.

CSS transitions: bling in 4D!

We’re sure you’re all familiar with link rollovers, the basic interactivity provided by our friends the :link,
:visited, :hover, :focus, and :active pseudo-classes. These changes are useful, but instant.

The CSS Transitions Module (http://j.mp/css3transitions, http://dev.w3.org/csswg/css3-transitions/) takes
things up a notch, giving us the simple ability to control the change of an existing CSS property from one
value to another over time. This fourth dimension opens up a world of possibilities, and we can easily
apply these transitions via a CSS change in state. This includes the following pseudo-classes (see
Chapter 8 for more information). It also includes using @media queries (see Chapter 9), and using
JavaScript by adding a class to an element, for example.

 :link

 :visited

 :hover

 :focus

 :active

 :disabled

 :enabled

 :checked

For more on triggering transitions, refer to Louis Lazarus’ articles “CSS3 Transitions Without Using :hover”

(http://j.mp/transitions-pseudo, www.impressivewebs.com/css3-transitions-without-hover) and “Triggering CSS3

Transitions With JavaScript” (http://j.mp/transitions-js, www.impressivewebs.com/css3-transitions-javascript).

We control a transition using the following properties:

http://j.mp/css3transitions
http://dev.w3.org/csswg/css3-transitions/
http://j.mp/transitions-pseudo
http://www.impressivewebs.com/css3-transitions-without-hover
http://j.mp/transitions-js
http://www.impressivewebs.com/css3-transitions-javascript

Chapter 12

532

 transition-property: A list of transitionable properties to apply the transition to. By default, this is
transition-property: all; and there’s a table of transitionable properties coming right up.

 transition-duration: The length of the transition in units of time, such as seconds (.4s) or
milliseconds (400ms). By default, this is the instant transition-duration: 0s; so it’s the same as not
using a transition.

 transition-timing-function: Controls the relative speed of the transition over the transition-duration
to make the transition start slowly and end quickly, for example. Values include linear, ease (the
default), ease-in, ease-out, ease-in-out, cubic-bezier(), step-start, step-end, and steps().

 transition-delay: A delay before the transition starts (times), with the default of transition-delay:
0s;. This can also take a negative value, making it appear to start already part-way through the
transition.

 transition: A shorthand property that takes transition-property, transition-duration, transition-
timing-function, and transition-delay, in that order. Missing properties use default values, giving a
default of transition: all 0s ease 0s;.

Setting what to transition with transition-property

transition-property allows us to specify one or more comma-separated animatable CSS properties to
transition, with a default value of all. Note that properties with vendor prefixes need to be written with the
vendor prefix in transition-property, too. For example, here’s vendor-prefixed code to transition the
transform property (aligned for column selection):

.postcard {

 -webkit-transition-property: -webkit-transform;

 -moz-transition-property: -moz-transform;

 -ms-transition-property: -ms-transform;

 -o-transition-property: -o-transform;

 transition-property: transform;

}

…

See Multiple Transition Values, and the transition shorthand property below for more on multiple values.

Transforms, Transitions, and Animation

533

Animatable properties for CSS transitions and CSS animations

You can apply CSS transitions to many but not all CSS properties, as you can see in Table 12-5 (based on
the table in the CSS3 Transitions specification11). These properties are also the ones we can animate with
CSS animations, which are covered later in this chapter.

Table 12-5. Animatable CSS Properties (for CSS Transitions and CSS Animations)

Property Type Property Name Transitionable Values

Catch-all All (all transitionable properties)

Text properties color color

font-size length, percentage

font-weight
number, keywords (excluding

bolder, lighter)

letter-spacing length

line-height number, length, percentage

text-indent length, percentage

text-shadow shadow

vertical-align keywords, length, percentage

11 In newer CSS specifications, animatable properties are indicated in the summary of the property’s definition.

Chapter 12

534

Property Type Property Name Transitionable Values

word-spacing length, percentage

Box properties background1 color (currently)

 background-color color

 background-image2 images, gradients

 background-position percentage, length

 border-left-color etc3 color

Box properties border-spacing length

 border-left-width etc3 length

 border-top-left-radius etc3 percentage, length

 box-shadow shadow

 clip rectangle

 crop rectangle

 height, min-height, max-height length, percentage

 margin-left etc3 length

Transforms, Transitions, and Animation

535

Property Type Property Name Transitionable Values

 opacity number

 outline-width length

 outline-offset integer

 outline-color color

 padding-left etc3 length

 width, min-width, max-width length, percentage

Positioning properties bottom length, percentage

 top length, percentage

 grid-*4 various

Positioning properties left length, percentage

 right length, percentage

 visibility visibility

 z-index integer

 zoom number

Chapter 12

536

Property Type Property Name Transitionable Values

SVG properties fill paint server

(http://j.mp/svg-props,

www.w3.org/TR/SVG/

propidx.html)

fill-opacity float

flood-color color, keywords

 lighting-color color, keywords

 marker-offset length

 stop-color color

 stop-opacity float

 stroke paint server

 stroke-dasharray list of numbers

 stroke-dashoffset number

 stroke-miterlimit number

 stroke-opacity float

SVG properties stroke-width float

 viewport-fill color

http://j.mp/svg-props
http://www.w3.org/TR/SVG/

Transforms, Transitions, and Animation

537

Property Type Property Name Transitionable Values

 viewport-fill-opacity color

1. While the shorthand background isn’t actually in the spec, it works (at least for background-color
and background-position values).

2. This is a little up in the air, with background-image in CSS Backgrounds and Borders Module
Level 3 changing from “only gradients” to “Animatable: no” as the spec became a candidate
recommendation. However, support has appeared in Chrome 19 Canary, and this is something
that designers want. Until widespread support arrives, simple transitioning gradients can be faked
with a transition on background-color plus an overlaying gradient and background image
transitions via image sprites and background-position or opacity.

3. Currently the spec only defines individual properties containing -top-, -bottom-, -left- and -right- for
border-width, border-color, margin, and padding. WebKit browsers, Firefox and Opera 12 can
also animate the shorthand properties.

4. grid-* are properties of the Grid Positioning module, covered in Chapter 9.

5. Finally, note that transitioning colors occur in RGBa color space, and transitions involving
transparent or colors with alpha channel may not occur as you expect. See the “Transition
gotchas” section later in this chapter for more details.

More properties will become animatable in the future, so keep this in mind when choosing whether to use
all or only specific properties. While all is convenient, it’s safer to be explicit when using only one property.
For example, when using JavaScript to transition elements, transition: all; will fire the transitionEnd event
every time a transition ends for each property changed. Also, currently Firefox supports the following
additional properties (with the -moz- prefix), which will also be transitioned with transition-property: all;. All
but the three properties with asterisks will probably be added to the transitions specification in the future,
and many are also supported in WebKit browsers.

Chapter 12

538

 -moz-background-
size

 -moz-border-radius

 -moz-box-flex*

 -moz-box-shadow

 -moz-column-count

 -moz-column-gap

 -moz-column-rule-
color

 -moz-column-rule-
width

 -moz-column-width

 -moz-font-size-adjust

 -moz-font-stretch

 -moz-image-region*

 -moz-marker-offset

 -moz-outline-radius*

 -moz-text-decoration-color

 -moz-transform

 -moz-transform-origin

There are some properties not in the spec that you’ll want to transition. These only have partial support at
the time of writing; they work in Firefox, WebKit and Opera browsers.

 border-radius

 box-shadow

There are also several properties or values you’ll want to transition, but they are both unspecced and
unsupported at the time of writing.

 background-image, including gradients

 float

 height or width using the value auto (currently both values must be a length or percentage)

The same applies to top, right, bottom, and left, but despite the spec (and probably due to a bug)
WebKit browsers can animate these using auto.

 display between none and anything else

 position between static and absolute

Transforms, Transitions, and Animation

539

The CSS Working Group is aware of these issues and some of them will be addressed (for example, the
transitioning background-image is being worked on and transitioning auto is expected in CSS4 transitions)
so this list will decrease in the future.

Faking auto on width and height with max-width and max-height

Animating between auto and 0 would be really useful for things like a “sliding drawer” effect for dialogs, as
demonstrated by jQuery’s slideToggle effect (http://j.mp/jq-slidetoggle, http://api.jquery.com/slideToggle/).
We can give the appearance of animating width and height to/from auto by substituting a value on max-
width or max-height, respectively, that’s larger than the content it contains (http://j.mp/faking-auto,
http://dabblet.com/gist/1676548), as shown in Figure 12-17.

.box {

 max-height: 5em; /* larger than your content: 200px would also work here */

 overflow: hidden; /* otherwise the text will be visible */

 padding: .5em .25em;

 transition: all 0.5s;

}

.wrapper:hover .box {

 max-height: 0;

 opacity: 0;

 padding: 0 .25em;

}

Figure 12-17. Faking transitioning from height: auto; to height: 0; via max-height, plus opacity and padding. For a short
transition this is passable.

This really helps for faking animating height because actually using a fixed height (in px) is asking for
trouble (people do resize!). However, a very large value introduces a delay, so we think using a value in
ems for max-height is safer. In the previous example, the boxes are about 5em high, so we used max-
height: 8em;.

http://j.mp/jq-slidetoggle
http://api.jquery.com/slideToggle/
http://j.mp/faking-auto
http://dabblet.com/gist/1676548

Chapter 12

540

Controlling the duration of a transition with transition-duration

The transition-duration property sets the duration of a transition and takes time values in seconds (s) or
milliseconds (ms), with three durations shown in Figure 12-18.

.one {transition-duration: .2s;}

.two {transition-duration: .4s;}

.three {transition-duration: 1s;}

Figure 12-18. A comparison of three transition durations — the first one has already finished in this screenshot.

How a transition’s duration appears will be affected by how noticeable the change in state is. For obviously
different states of a link’s :hover state, a transition as fast as transition-duration: .2s; (or transition-duration:
200ms;) can be used to smooth a quick change, but anything faster than this becomes indistinguishable
from no transition. We find a value of .4s (or 400ms) tends to works well for a subtle transition. However, if
you’re moving an element any distance, .4s could be way too short. Longer transitions tend to draw more
attention to themselves, but when used sparingly can be useful for a specific effect, especially when
combined with the transition-timing-function property, which is coming up next.

transition-timing-function, cubic Bézier curves, and steps()

The transition-timing-function property is the hardest part of transitions to get your head around. Luckily,
it’s all pretty simple once you’ve seen some examples. The property has functions based on Bézier
curves12 (moving on an arc) and steps (stop-start movement). Cubic Bézier curves have four points: the
start and end locations are diagonally opposite each other in the corners of a square (0,0 and 1,1), and the
other two points are the control handles that define the curve, as seen in Figure 12-19. In contrast, the
stepping functions (steps(), etc.) divide the transition into equally sized intervals, dependent on the number
of steps.

12 Bézier curves (http://j.mp/bezier-curves, http://en.wikipedia.org/wiki/Bézier_curve) are just the curved paths with

handles you’ll be familiar with from vector graphics like SVG and software like Adobe Illustrator and Inkscape.

http://j.mp/bezier-curves

Transforms, Transitions, and Animation

541

Figure 12-19. The cubic-bezier equivalent to transition-timing-function: ease;, from Lea Verou’s excellent cubic Bézier

visualiser http://cubic-bezier.com.

transition-timing-function values include cubic-bezier() and steps(), plus several common presets.

 cubic-bezier()

 This allows you to make a custom cubic Bézier curve by setting the X,Y handle locations for the
start and end points in the pattern cubic-bezier(X1, Y1, X2, Y2). There are also several common
preset values.

 linear: The transition has a constant speed. Equivalent to cubic-bezier(0, 0,
1.0, 1.0).

 ease: The default transition, it starts quickly then tapers out, like a faster,
smoother version of ease-out. Equivalent to cubic-bezier(0.25, 0.1, 0.25, 1.0)
(default).

 ease-in: The transition starts slow and accelerates to the end. Equivalent to
cubic-bezier(0.42, 0, 1.0, 1.0).

 ease-out: The transition starts fast then slows down. Equivalent to cubic-
bezier(0, 0, 0.58, 1.0).

http://cubic-bezier.com

Chapter 12

542

 ease-in-out: The transition starts and ends slowly, but transitions quickly in
the middle. Equivalent to cubic-bezier(0.42, 0, 0.58, 1.0).

 steps(): The transition jumps from one step to another, rather than transitioning smoothly like
Bézier-based transitions. It has a value with the number of steps and can also take a second
value—either start or end—that controls how the transition proceeds.13

 step-start: The transition is instant and happens immediately when triggered.
This is equivalent to steps(1,start).

 step-end: The transition is instant but happens at the end of the transition-
duration. This is equivalent to steps(1,end).

Figure 12-20 shows a demonstration of the preset values (we’re reordered them to make the differences
more obvious).

13 Peter Beverloo has made a nice demonstration of steps() transitions (plus cubic-bezier presets) (http://j.mp/css3-ttf /

http://peter.sh/experiments/css3-transition-timing-functions).

http://j.mp/css3-ttf/
http://j.mp/css3-ttf/
http://peter.sh/experiments/css3-transition-timing-functions

Transforms, Transitions, and Animation

543

Figure 12-20. A comparison of the preset values of transition-timing-function over time, including some example steps()
functions. (Screenshots approximately ¼, ½, and ¾ through the transition.)

Chapter 12

544

The default ease is a good all-round choice, although linear animates more smoothly for transitions with a
small movement. While the presets are generally enough, for a specific effect in a long transition you can
make your own Bézier timing function using cubic-bezier(X1, Y1, X2, Y2).

Y values can exceed 0-1.0, causing the transition to “bounce,” as demonstrated in Figure 12-21.

Figure 12-21. A cubic-bezier value with “bounce” (Y values less than 0 or greater than 1)

You can progressively add a cubic-bezier timing function with Y values less than 0 or greater than 1 by
using a “clamped” fallback first (one with values between 0 and 1), as demonstrated in Figure 12-22. This
will be closer to the timing function you want than the default ease.

.ease {transition-timing-function: cubic-bezier(.25,.1,.25,1);} /* = ease */

.clamped {transition-timing-function: cubic-bezier(.7,0,.2,1);} /* Y=0~1 */

.bounce {transition-timing-function: cubic-bezier(.7,-.2,.2,1.3);}

/* our recommended way to include a cubic-bezier with bounce: */

.bulletproof { /* including vendor prefixes to show WebKit fallback */

 -webkit-transition-timing-function: cubic-bezier(.7,0,.2,1); /* fallback */

Transforms, Transitions, and Animation

545

 -webkit-transition-timing-function: cubic-bezier(.7,-.2,.2,1.3);

 -moz-transition-timing-function: cubic-bezier(.7,-.2,.2,1.3);

 -ms-transition-timing-function: cubic-bezier(.7,-.2,.2,1.3);

 -o-transition-timing-function: cubic-bezier(.7,-.2,.2,1.3);

 transition-timing-function: cubic-bezier(.7,-.2,.2,1.3);

}

Figure 12-22. In browsers that don’t support Y values outside 0-1, the default ease timing function will be used instead.

By adding a “clamped” cubic-bezier fallback before one with bounce, you can get a closer approximation in these
browsers.

Chapter 12

546

The steps() timing functions can be used to make things happen at the start or end of a transition. They
can be used for frame-based animation, as demonstrated by Lea Verou in “Pure CSS3 typing animation
with steps()” (http://j.mp/typing-steps, http://lea.verou.me/2011/09/pure-css3-typing-animation-with-steps/)
and “Simurai in Sprite Sheet animation” (http://j.mp/sprite-steps, http://jsfiddle.net/simurai/CGmCe/).

Finally, while these cubic Bézier and step-based timing functions are great, they don’t cover the full scope
of potential timing functions. Some of the timing functions that Scripty2 has would require something else,
like CSS Animations or JavaScript, for example (http://j.mp/scripty2-ttf,
http://scripty2.com/doc/scripty2%20fx/s2/fx/transitions.html).

Delaying the start of a transition with transition-delay

As you might expect, transition-delay allows us to delay the start of a transition after it has been triggered.
Just like transition-duration, it takes time values in seconds or milliseconds. When the value is positive, the
transition is delayed by the value’s amount. When the value is negative, the animation is jump-started by
the transition-delay’s value, beginning as if that time had already elapsed. Compare these to the default
transition-delay: 0 in Figure 12-23.

hover .box {transition-duration: 3s;}

:hover .positive-delay {transition-delay: 1s;} /* “delay 1s” box */

/* transition-delay is 0 by default (the “no delay” box) */

:hover .negative-delay {transition-delay: -1s;} /* “delay -1s” box */

Figure 12-23. We can delay or jump-start the start of a transition using transition-delay. This figure shows 1s into a 3s

linear animation.

When a transition is triggered but the trigger is removed before it completes (for example, a mouseover
then mouseout of a transition triggered by :hover), the transition will then play in reverse from its current
state to its initial state. If there’s a transition-delay, this will also occur when the transition reverses—for a
positive delay the element will freeze, and for a negative delay the element will jump, before continuing.

http://j.mp/typing-steps
http://lea.verou.me/2011/09/pure-css3-typing-animation-with-steps/
http://j.mp/sprite-steps
http://jsfiddle.net/simurai/CGmCe/
http://j.mp/scripty2-ttf
http://scripty2.com/doc/scripty2%20fx/s2/fx/transitions.html

Transforms, Transitions, and Animation

547

Multiple transition values and the transition shorthand property

All of these properties can take more than one value, separated by commas, allowing us to transition more
than one property at once with different settings. When using multiple values for each transition-* property,
the order of the values is important, as the values of each property are grouped together based on this
order. For example, this code block

.warning {

 transition-property: left, opacity, color;

 transition-duration: 600ms, 300ms, 400ms;

 transition-delay: 0s, 0s, 300ms;

} /* values aligned to make their groupings clear */

is equivalent to these three comma-separated transitions

.warning {transition: left 600ms, opacity 300ms, color 400ms 300ms;}

transition shorthand property order

When using the transition property, it’s important to stick to this order for the values (or for each comma-
separated group of values for multiple transitions):

1. transition-property

2. transition-duration

3. transition-timing-function

4. transition-delay

Any values we don’t declare will use the default value. We don’t declare transition-timing-function in the
first example above, so the transition will use the default ease. In addition, while we do need to declare 0s
values for transition-delay in the first example so that the last value is applied to color, we don’t when using
transition in the second example, as 0s is the default.

Browser support for CSS transitions

Modern browsers, with the sad exception of Internet Explorer 9, support transitions pretty well, as you can
see in Table 12-6.

Chapter 12

548

Table 12-6. Browser Support for CSS Transitions (http://j.mp/c-transitions, http://caniuse.com/#feat=css-transitions)

Property IE Firefox Safari Chrome Opera

transition-property 10 4 -moz-

16

3.2 -webkit- 1-webkit- 10.5 -o-

12.5

transition-duration 10 4 -moz-

16

3.2 -webkit- 1 -webkit- 10.5 -o-

12.5

transition-timing-function¹ 10 4 -moz-

16

3.2 -webkit- 1 -webkit- 10.5 -o-

12.5

 :steps()² 10 5 -moz-

16

5 -webkit- 8 -webkit- 12 -o-

12.5

 “bounce”² 10 4 -moz-

16

6 -webkit-³ 16 -webkit-³ 10.5 -o-

12.5

transition-delay 10 4 -moz-

16

3.2 -webkit- 1 -webkit- 10.5 -o-

12.5

transition 10 4 -moz-

16

3.2 -webkit- 1 -webkit- 10.5 -o-

12.5

1. This covers support for basic cubic bézier-based timing functions.

2. steps() (plus the presets step-start and step-end) and Y values outside 0-1 for cubic-bezier values
(“bounce”) are comparatively recent additions to the spec.

http://j.mp/c-transitions
http://caniuse.com/#feat=css-transitions

Transforms, Transitions, and Animation

549

3. See the previous section on transition-timing-function for a WebKit fallback.

Apart from older versions of Internet Explorer, browser support for transitions is good. Luckily this isn’t
really a problem—transitions as typically used aren’t essential to functionality. While they will improve the
user experience when used intelligently, the lack of them just means an instant change in state, which is a
perfectly acceptable fallback. Because of this you should use them whenever they’re appropriate.

CSS transitions gotchas

As usual, there are some things that can catch you out, plus a few browser quirks to keep you on your
toes. Here are some we’ve come across:

 When using transitions with link states like :hover, you probably want to apply them to the default
state, so that all link state changes transition. If you add the transition to the :hover state instead,
the transition will occur on mouseover, not on mouseout.

 Colors are transitioned in RGBa color-space, which may give you unexpected results if you’re
using e.g. HSLa.

 Browsers that use non-premultiplied color interpolation transition colors with an alpha channel
unintuitively, such as RGBa and the color transparent. During the transition other colors may be
visible; for example, transparent to red would show some black because transparent is treated as
rgba(0,0,0,0). Using premultiplied colors avoids this by applying the alpha value to each channel.
At the time of writing, Opera is using non-premultiplied colors, Chrome and Safari changed to
using premultiplied colors in 2010 (so it affects Safari 4.0.5), and Firefox has always used
premultiplied colors.14 You can generally avoid problems by converting transparent (and HSLa
etc) into suitable rgba() values. This avoids the dark shade mid-transition and also uses the
cascade to support IE6-8.

.box {

 background-color: transparent; /* IE6-8 */

 background-color: rgba(255,0,0,0); /* modern browsers (transparent red) */

}

14 Note that the specification is still undecided regarding premultiplied or non-premultiplied color, so both ways are
currently valid.

Chapter 12

550

.box:hover {

 background-color: #f00; /* IE6-8 (or #ff0000 or red) */

 background-color: rgba(255,0,0,1); /* modern browsers */

}

 For performance reasons, for transitioning or animating text browsers turn off sub-pixel anti-
aliasing (WebKit) or don’t anti-alias at all (Opera), making this text look lighter. Opera 11.60 also
doesn’t anti-alias transitioned @font-face text (fixed in Opera 12).

 You can’t apply a transition by changing property values using JavaScript without triggering a
reflow or using a delay before setting the second style. For more see Divya Manian’s presentation
“Taking Presentation out of JavaScript One Setinterval at a Time” (http’//nimbu.in/txjs/).

Gotchas with transitioning transforms (and animations)

Combining transitions with CSS transforms is an obvious step, but again there are some browser quirks
waiting for you.

 Avoid transitioning between different units, such as from left: 12px; to left: 50%;. Opera and
Chrome transition instantly, and Safari is buggy if the transition is interrupted. Firefox works as
expected.

 Opera up to 11 doesn’t transition translate() on click via a JavaScript addEventListener unless
you force a reflow. This is fixed in recent versions.

Fuzzy transforms, z-index, and hardware acceleration

If we apply a transition to a 2D transform, the elements become fuzzy in WebKit browsers during the
transition. However, a sneaky trick via Thomas Fuchs gets around this: adding a 3D transform (even one
that does nothing) makes the transform use hardware acceleration, avoiding flicker and keeping things
smooth and fast (http://j.mp/hw-accel, http://mir.aculo.us/2010/08/05/html5-buzzwords-in-action/). This also
works for opacity. For example, you could add the following:

-webkit-transform: translateZ(0);

You may also need to apply -webkit-transform: translateZ(0); (or some other 3D transformation) to other
non-transformed elements to bring them in front of 3D-transformed ones, as Estelle Weyl notes. 3D
transforms effectively have a z-index of infinity.

http://j.mp/hw-accel
http://mir.aculo.us/2010/08/05/html5-buzzwords-in-action/

Transforms, Transitions, and Animation

551

Note: While using hardware acceleration can improve performance, this comes at the
expense of memory, as Ariya Hidayat explains in “Understanding Hardware Acceleration
on Mobile Browsers” (http://j.mp/mobile-hw, www.sencha.com/blog/
understanding-hardware-acceleration-on-mobile-browsers/).

Stopping transforms from flickering when transitioning (and animating)

Transitioning or animating transforms (especially 3D transforms) can be very demanding, especially on
iOS and Android where the mobile’s relatively puny hardware adds to our problems. First, avoid
transitioning or animating elements larger than the viewport. If you can’t, or still encounter flickering or
stuttery animation, Wes Baker suggests try using backface-visibility: hidden; on animated elements
(http://j.mp/anim-flicker, http://stackoverflow.com/questions/2946748/iphone-webkit-css-animations-cause-
flicker), possibly in conjunction with perspective and/or a 3D transform, as mentioned previously.

-webkit-backface-visibility: hidden;

backface-visibility: hidden;

/* possibly combined with… */

-webkit-transform: translateZ(0); /* …or any 3D transformation */

-webkit-perspective: 1000;

perspective: 1000;

Of course, if your animation is complex or you’re animating nested elements, consider if it’s possible to
simplify the animation first. As the 3D transform is just a default value and for performance on mobile
devices only, it’s fine to not add an unprefixed property. As always, test thoroughly. Finally, as transitions
are demanding, consider restricting them to capable devices only. For more detail, refer to Matt Seeley’s
“WebKit in your living room” speech (http://j.mp/anim-perf
http://www.youtube.com/watch?v=xuMWhto62Eo).

CSS transitions in summary

CSS transitions allow us to control a CSS change in state over time, so without them the change will just
occur instantly. In pretty much all cases this means they’re fine to use to enhance the user’s experience,
and we feel it’s not worth polyfilling them for non-supporting browsers using JavaScript. Keep the the
following things in mind:

 Make sure the properties you transition behave the same in different browsers.

http://j.mp/mobile-hw
http://www.sencha.com/blog/
http://j.mp/anim-flicker
http://stackoverflow.com/questions/2946748/iphone-webkit-css-animations-cause-flicker
http://stackoverflow.com/questions/2946748/iphone-webkit-css-animations-cause-flicker
http://j.mp/anim-perf
http://j.mp/anim-perf
http://www.youtube.com/watch?v=xuMWhto62Eo

Chapter 12

552

 Check especially carefully when the transitioned property is also fairly new, such as with
transform.

 Overusing transitions may have performance implications, especially in mobile browsers.

 :hover transitions won’t work on touch-based mobile devices.

As with everything in this chapter, err on the side of snappy and subtle. Large amounts of movement and
slow, showy interactions may seem impressive when used the first time, but both will make your site feel
overblown after a few uses.

CSS transitions provide an easy-to-use tool to spice up UI interactions, but they have their limits.
Sometimes you want more control over the animation, for example the ability to loop. Next up we’ll look at
CSS animations, a more powerful and involved alternative.

Keyframin’ with CSS animations

CSS animation is like elaborate icing on top of an expensive cake at a birthday party. While it may only be
a very small part of the party, it has the potential to steal the show, as Figure 12-24 attests.

Figure 12-24. Mmmm, everyone loves cake…

Transforms, Transitions, and Animation

553

You’ve seen how to do basic movement via CSS transitions. The CSS animations specification
(http://j.mp/css3-animations, http://dev.w3.org/csswg/css3-animations/) takes things a step further with
keyframe-based animations. The idea of keyframes will be familiar to anyone who’s done animation with
programs like Flash or Director. We set up how we’d like things to be at certain points during the
animation, then the browser handles the tweening (the in-between animation) to smoothly get us from one
keyframe state to the next. There are some examples of animatable properties in Lea Verou’s Animatable
(http://j.mp/css3-animatable, http://leaverou.github.com/animatable/), and how to use keyframe animations
in the real world on Dan Eden’s Animate.css (http://j.mp/animate-css, http://daneden.me/animate/).

Unlike CSS transitions, properties animate from and to the element’s intrinsic style—the computed
values15 the browser uses to display the element with no animation applied. This means that if the from (or
to) keyframe is different to the element’s intrinsic style, when the animation starts (or ends) this change
occurs instantly for a default animation.

CSS animations are added in two parts, as shown in the following code.

1. A @keyframes block containing individual keyframes defining and naming an animation.16

2. animation-* properties to add a named @keyframes animation to an element and to control the
animation’s behavior.

@keyframes popup { /* ← define the animation “popup” */

 from {…} /* CSS for any differences between the element’s initial state and the animation’s
initial state */

 to {…} /* CSS for the animation’s final state */

}

.popup {animation: popup 1s;} /* ← apply the animation “popup” */

15 Computed values are the styles the browser uses to display the element, based on the CSS cascade of all applicable
styles. When the animation is applied the computed values are a combination of intrinsic style and the animation’s
styles.

16 There’s no need for a @keyframes block to be before a declaration applying it in the CSS file. We generally add
them to a section towards the end of our CSS based on the principle of general to specific.

http://j.mp/css3-animations
http://dev.w3.org/csswg/css3-animations/
http://j.mp/css3-animatable
http://leaverou.github.com/animatable/
http://j.mp/animate-css
http://daneden.me/animate/

Chapter 12

554

Each keyframe rule starts with a percentage or the keywords from (the same as 0%) or to (the same as
100%) acting like a selector and specifying where in the animation the keyframe occurs. Percentages
represent a percentage of the animation-duration, so a 50% keyframe in a 2s animation would be 1s into
an animation. The following code shows an @keyframes declaration with several keyframe rules:

@keyframes popup {

 0% {…} /* the start of the animation (the same as “from”) */

 25% {…} /* a keyframe one quarter through the animation */

 66.6667% {…} /* a keyframe two thirds through the animation */

 …

 to {…} /* the end of the animation (the same as “100%”) */

}

Add the properties you want to animate to a keyframe. The browser will only use animatable properties,
with the addition of the animation-timing-function property that overrides the animation’s timing function for
that keyframe only. Refer to Table 12-5 for a list of these. Non-animatable properties (apart from
animation-timing-function) will be ignored.

Note: Property values in each keyframe rule are only animated when tweening from and
to a different value. They don’t cascade and are not inherited by later keyframes. This
might mean you have to add a declaration to more than one keyframe.

After naming and defining an animation, we can apply it to an element and control how the animation
occurs using the animation-* properties. These can take multiple values in a comma-separated list to
define multiple animations (we’ll cover this in a later section).

 animation-name: The name (or comma-separated names) of @keyframes-defined animations to
apply. By default this is none.

 animation-duration: The time for the animation to occur once, in seconds (s) or milliseconds (ms).
By default this is 0s or the same as no animation.

 animation-timing-function: The timing function (just like in CSS transitions) to use for the
animation. Values include linear, ease (the default), ease-in, ease-out, ease-in-out, cubic-bezier(),
step-start, step-end, and steps().This can also be added to the @keyframes declaration to
override the animation’s animation-timing-function per -keyframe.

Transforms, Transitions, and Animation

555

 animation-delay: A delay before the animation starts, in seconds (s) or milliseconds (ms). The
default is 0s and this can also take a negative value, appearing to start already part-way through
the animation.

 animation-iteration-count: The number of times the animation repeats. Acceptable values are 0
(no animation), positive numbers (including non-integers), and infinite. The default count is 1.

 animation-direction: This takes the values normal (the default) and alternate, and only has an
effect when the animation-iteration-count is greater than 1. normal causes the animation to play
forward (from start to end) each time, where as alternate causes the animation to play forward
then reverse.

 animation-fill-mode: This controls if the from keyframe affects the animation during an animation-
delay and/or if the ending state is kept when an animation ends, via the following values:

 animation-fill-mode: none;: Applies from keyframe values only when a
positive animation-delay ends and uses the element’s intrinsic style when the
animation ends. This is the default state.

 animation-fill-mode: forwards;: This causes the element(s) to retain the
properties defined by the final keyframe (usually the 100% or to keyframe) after
the animation finishes. The forwards value (or both) makes an animation’s end
state behave the same as CSS tTransitions.

 animation-fill-mode: backwards;: This causes the element(s) to have any
properties defined by the first keyframe (0% or from) during an animation-delay
with a positive value.

 animation-fill-mode: both;: This is the same as both forwards and backwards.

 animation-play-state: By default this value is running, but when this is changed to paused the
animation pauses. The animation can be resumed from the same place by changing back to
running. This gives us an easy way to pause animations using JavaScript.

 animation: The animation shorthand property takes a space-separated list of these animation
properties (all the above except animation-play-state). Multiple animations are separated by
commas.

Chapter 12

556

The CSS animations specification is still being actively developed and is expected to
change.17 Because of this we recommend leaving out un-prefixed animation-* and
@keyframes declarations for now. However, for simplicity most of our example code will
show the un-prefixed syntax.

A simple animation example with animation-name and animation-
duration

Let’s see how much code a simple animation requires — including vendor prefixes — in Figure 12-25.

.box {position: absolute;}

:hover .box {

 -webkit-animation-name: moveit;

 -moz-animation-name: moveit;

 -ms-animation-name: moveit;

 -o-animation-name: moveit;

 -webkit-animation-duration: 1s;

 -moz-animation-duration: 1s;

 -ms-animation-duration: 1s;

 -o-animation-duration: 1s;

}

@-webkit-keyframes moveit {to {left: 100%;}}

17 This is because the CSS Working Group plans to move Animations (http://j.mp/web-anim, www.w3.org/2012/01/13-

svg-minutes.html#action02) to a combined, generalised “effects” specification, that will also be used for SVG animation.

http://j.mp/web-anim
http://www.w3.org/2012/01/13-svg-minutes.html#action02
http://www.w3.org/2012/01/13-svg-minutes.html#action02

Transforms, Transitions, and Animation

557

 @-moz-keyframes moveit {to {left: 100%;}}

 @-ms-keyframes moveit {to {left: 100%;}}

 @-o-keyframes moveit {to {left: 100%;}}

Figure 12-25. Even a simple animation currently requires a lot of vendor-specific CSS. But hey, keyframed animations
in CSS!

That seems like a lot because we’re writing declarations to define the animation (the @keyframes block)
and to call it (the animation-* properties), plus we’re writing everything four times due to browser prefixes,
but really it’s unusually little. Did we really just get animation in CSS with only this?18

:hover .box {

 animation-name: moveit;

 animation-duration: 1s;

}

@keyframes moveit {to {left: 100%;}}

But how? As usual, we are helped by defaults. Every animation needs an animation-name, and we
suspect you’ll want an animation-duration greater than the default 0s. However, all the other animation-*
properties are optional, as their default values don’t prevent an animation from happening. We, of course,
need a @keyframes declaration with at least one keyframe, in this case to {left: 100%;}, the state we’d like
to animate to. The animated element itself provides the animation’s starting state—for our animated
property left it’s 0. While we can style the start of the animation explicitly using from {} or 0% {}, in this
example there’s no need.

Note: Not all properties and not all values of animatable properties can be animated.
Refer to Table 12-5 earlier in this chapter for details.

18 Please note, this code is only for example — don’t use unprefixed animation-* and @keyframes declarations for now.

Chapter 12

558

There’s not much else to tell about animation-name and animation-duration. If you’ve read the earlier
section on CSS transitions, you’ll already know animation-duration accepts values in milliseconds (ms) and
seconds (s), just like transition-duration. To be safe, we recommend you avoid using other property values
as an animation-name to avoid potential browser bugs when using the animation shorthand.

 alternate

 backwards

 both

 ease

 ease-in

 ease-in-out

 ease-out

 forwards

 infinite

 linear

 none

 normal

 paused

 running

 step-end

 step-start

 steps

Controlling an animation using @keyframes

The example is simple; we could just as easily have used a transition because it’s only animating between
the initial and final states. Let’s add some keyframes in Figure 12-26.

.box {position: absolute;}

:hover .box {

 animation-name: shakeit;

 animation-duration: .5s;

}

@keyframes shakeit {

 10%, 37.5%, 75% {left: -10%;}

 22.5%, 52.5% {left: 10%;}

 75% {left: -7%;}

Transforms, Transitions, and Animation

559

}

/* This @keyframes declaration could also be written:

@keyframes shakeit {

 10% {left: -10%;}

 22.5% {left: 10%;}

 37.5% {left: -10%;}

 52.5% {left: 10%;}

 75% {left: -7%;}

} */

Figure 12-26. @keyframes allow us to do complex animations not possible using transition. Imagine the box shaking

back and forth here.

We can use commas between keyframes properties when they share the same value, and percentage
keyframe properties can contain decimal places. We made a mistake in this example by defining the value
for 75% twice. If a property is defined for the same keyframe percentage selector in two different
keyframes, the later value (in this case left: -7%;) will be used.

Timing functions with animation-timing-function

As long as you’ve already read the section “transition-timing-function, cubic Bézier curves, and steps()”
earlier in this chapter, this property is a piece of cake. You’ll be happy to hear that animation-timing-
function works exactly the same as transition-timing-function, and takes all the same values.

 cubic-bezier()

 linear

 ease

Chapter 12

560

 ease-in

 ease-out

 ease-in-out

 steps()

 step-start

 step-end

Figure 12-20 demonstrated these values using transitions and transition-timing-function, but we can
achieve the same result using animation, as demonstrated in Figure 12-27. In addition we can use
different timing functions for different parts of the animation.

Transforms, Transitions, and Animation

561

Figure 12-27. A demonstration of some timing function values in an animation using animation-timing-function, with the

first two working the same as they would in a transition. The “variable” box uses ease, step-start, and then ease-out.

Unlike CSS transitions, an animation can have more than one timing function, as you can change the
timing function per keyframe by adding animation-timing-function to the keyframe’s ruleset. This will
override the animation’s timing function for that keyframe only. We did this for the “variable” box in Figure
12-27 using the following code:

Chapter 12

562

@keyframes presets {

 33% {

 transform: translate(113%,0);

 animation-timing-function: step-start;

 }

 67% {

 transform: translate(227%,0);

 animation-timing-function: ease-out;

 }

 to {transform: translate(340%,0);}

}

This uses three timing values.

 0%-33% uses ease (the default).

 33%-67% uses step-start, defined in the 33% keyframe ruleset.

 67%-100% uses ease-out, defined in the 67% keyframe ruleset.

As mentioned in the section “transition-timing-function, cubic Bézier curves, and steps()”, these timing
functions don’t cover all the timing functions you might want. As Thomas Fuchs points out in “CSS
animation transition-timing-functions and why they are not enough,” you may have to emulate the timing
function you want using multiple keyframes (or JavaScript).

Changing how an animation starts using animation-delay

As you’d expect, animation-delay takes a time value and changes the start time of the animation. It’s also
conveniently just like transition-delay. When the value is positive, the start is delayed by the value’s
amount. When the value is negative, the animation is jump-started by the animation-delay’s value,
beginning as if that time had already elapsed. Let’s see how animation-delay affects things in Figure 12-
28.

:hover .box {animation-duration: 3s;}

:hover .positive-delay {animation-delay: 1s;} /* “delay 1s” box */

Transforms, Transitions, and Animation

563

/* animation-delay is 0 by default (the “no delay” box) */

:hover .negative-delay {animation-delay: -1s;} /* “delay -1s” box */

Figure 12-28. We can delay or jump-start the start of an animation using animation-delay.

In this example, the default animation doesn’t declare animation-delay, so it has the default value 0s and
the animation takes three seconds. Adding animation-delay: 1s; means the animation starts after a one
second delay and takes four seconds to end. Adding animation-delay: -1s; means the animation starts
immediately from where it’d be if one second had already elapsed, and the animation ends in only two
seconds.

How many times? animation-iteration-count will tell you!

When an animation is triggered, by default it will play once then reset to its initial state (more on that in a
moment). Using animation-iteration-count we can play the animation more than once or with the value
infinite until the browser window is closed. Figure 12-29 shows this in action.

:hover .box {animation-duration: 3s;}

/* animation-iteration-count is 1 by default (the “count: 1” box) */

:hover .two-five {animation-iteration-count: 2.5;} /* non-integers are allowed */

:hover .infinite {animation-iteration-count: infinite;} /* use carefully! */

Figure 12-29. animation-iteration-count controls how many times an animation will play

Using a non-integer value like 2.5 will make the animation play two and a half times before ending in
supporting browsers. Negative values are treated the same as 0. As animations are generally very

Chapter 12

564

distracting (as Flash ad makers know so well) and can be a performance hog19, so use the infinite value
responsibly!

Mixing it up with animation-direction

You’ve seen how to increase the number of times an animation plays with animation-iteration-count. If the
number is greater than 1, we can use animation-direction to control whether subsequent even-numbered
animations also go from start to end (the value normal), or in reverse with the value alternate. As
animation-direction: normal; is the default, let’s apply animation-direction: alternate; to our previous
example, in Figure 12-30.

:hover .box {

 …

 animation-direction: alternate;

}

Figure 12-30. animation-direction: alternate; changes animations with an animation-iteration-count greater than 2 to
reverse their direction on even counts.

Although a simple property, you’ll find animation-direction invaluable if you ever need to make a Cylon eye
using CSS.

Control how elements behave before and after an animation with
animation-fill-mode

As you’ve no doubt noticed in the examples so far, unless an animation is playing it has no effect. This
includes during a positive animation-delay—any from keyframe values are only applied after the delay
ends. This also means that, unlike CSS transforms, animated elements will return to their intrinsic style by

19 Although animations will pause at the next keyframe when the browser tab (or browser) is not active.

Transforms, Transitions, and Animation

565

default when an animation ends, even if the animation trigger still applies. This is due to the animation-fill-
mode property’s default value none, but the values forwards, backwards, and both let us control these
things.

 animation-fill-mode: forwards;: Animated elements will keep the animation’s ending keyframe’s
properties. Normally this is the 100% or to keyframe, but not always given animation-iteration-
count and animation-direction.

 animation-fill-mode: backwards;: Animated elements will be styled by the animation from or 0%
keyframe during a positive animation-delay.

 animation-fill-mode: both;: This is a combination of forwards and backwards behavior.

Let’s see examples of each animation-fill-mode in action, including the default value of none, in
Figure 12-31.

:hover .box {

 animation-duration: 3s;

 animation-delay: 1s;

}

@keyframes pushit {

 0% {background-color: #bfbfbf;} /* start gray */

 to {left: 100%;} /* end on the right */

}

/* animation-fill-mode is none by default */

 /* forwards: keep the animation’s final state when it ends */

:hover .fill-forwards {animation-fill-mode: forwards;}

 /* backwards: use the from/0% keyframe styles during animation-delay */

:hover .fill-backwards {animation-fill-mode: backwards;}

 /* both: the same as forwards and backwards */

:hover .fill-both {animation-fill-mode: both;}

Chapter 12

566

Figure 12-31. Examples of the four animation-fill-mode values: none, forwards, backwards, and both.

The initial keyframe has a gray background-color, but the animation also has a one second delay. The
backwards and both values apply the 0% keyframe’s style during the animation-delay. The forwards and
both values keep the last keyframe’s styles, rather than reverting to the element’s intrinsic style. This
animation is triggered on :hover, so in this example keeping the last keyframe’s styles (via forwards or
both) will only apply while mousing over the element.

Transforms, Transitions, and Animation

567

Pausing an animation using animation-play-state

This simple property has the value running by default. Changing this to paused will pause the animation,
as shown in Figure 12-32. If the value is then changed to running, the animation will resume from where it
left off.

:hover .box {

 animation-name: runner;

 animation-duration: 3s;

 animation-timing-function: ease-in-out;

 animation-iteration-count: infinite;

 animation-direction: alternate;

}

.box:hover {animation-play-state: paused;}

Figure 12-32. The animation will start when you hover over this figure, but if you hover over the box it will be paused.

While you can stop an element animating via JavaScript by just removing the class that applies it, this will
instantly change the animated element(s) to their pre-animation state. Being able to pause the animation
(with or without JavaScript), and then pick up from where we left off, opens up some nice new interactivity
options.

Note: You can’t restart an animation by removing and adding the animation class using
JavaScript. Chris Coyier’s article “Restart CSS Animation” (http://j.mp/restart-anim,
http://css-tricks.com/restart-css-animation/) covers ways that do work (removing the
element and re-adding it, or controlling animation-play-state via JavaScript), but a simple
yet kludgy non-JavaScript way is to define an identical @keyframes animation with a
different name.

http://j.mp/restart-anim
http://css-tricks.com/restart-css-animation/

Chapter 12

568

The animation shorthand property and comma-separated
animation-* values

We’ve looked at each of the animation-* properties in turn and, as with transition, we can specify several
values together using the animation shorthand property. This takes the values of each of the animation-*
properties (except animation-play-state).

ANIMATION SHORTHAND PROPERTY ORDER

The spec says order is important, but only mentions putting animation-duration before animation-

delay. We recommend using the following order to avoid potential browser bugs:

1. animation-name

2. animation-duration

3. animation-timing-function

4. animation-delay

5. animation-iteration-count

6. animation-direction

7. animation-fill-mode

For example, WebKit browsers need animation-name before animation-iteration-count and

animation-direction.

Our last animation used individual animation-* properties.

:hover .box {

 animation-name: runner;

 animation-duration: 3s;

Transforms, Transitions, and Animation

569

 animation-timing-function: ease-in-out;

 animation-iteration-count: infinite;

 animation-direction: alternate;

}

It’s equivalent to this (much shorter) animation property – remember that we don’t have to include any
properties with a default value, in this case animation-delay and animation-fill-mode.:

:hover .box {animation: runner 3s ease-in-out infinite alternate;}

We can also specify more than one animation, using commas to separate values, for both individual
animation-* properties and for the shorthand animation property. Both ways are demonstrated in Figure
12-33.

/* Using individual properties for multiple animations: */

:hover .box {

 animation-name: moveit, colorstep, fade;

 animation-duration: 3s; /* one value? */

 animation-timing-function: linear, steps(2,start); /* two values? */

} /* values aligned to make their groupings clear */

/* The same styles using the animation shorthand property:

:hover .box {

 animation: moveit 3s linear, colorstep 3s steps(2,start), fade 3s linear;

} */

Figure 12-33. Using two animations so we can use different timing functions for each one—linear for movement, and

steps(2) for background color. The individual properties and shorthand declarations are equivalent.

Chapter 12

570

Note: In the individual properties form the first value of each property will be associated
with the first animation-name value. If there aren’t enough values for the number of
animation names, the values that are present are repeated, as is the case in Figure 12-
33 with animation-duration and animation-timing-function. By repeating the value(s),
these will be treated as animation-duration: 3s, 3s 3s; and animation-timing-function:
linear, steps(2,steps), linear;.

Browser support for CSS animations

As another Apple baby, CSS animations have been supported in WebKit browsers Safari and Chrome for
quite a while, as Table 12-7 shows. Firefox and most recently Internet Explorer have added support, and
Opera will join the party soon. However, despite three implementations, the CSS animations specification
is changing, so it’s not stable enough to add an unprefixed version at the time of writing.

Table 12-7. Browser Support for CSS Animation (http://j.mp/c-animation, http://caniuse.com/#feat=css-animation)

Property IE Firefox Safari Chrome Opera

Animation-name 10
5 -moz-

16

4 -webkit- 1 -webkit-
12 -o-

12.5

Animation-duration 10
5 -moz-

16

4 -webkit- 1 -webkit-
12 -o-

12.5

Animation-timing-function¹ 10 5 -moz-

16

4 -webkit- 1 -webkit- 12 -o-

12.5

 :steps()² 10 5 -moz-

16

5 -webkit- 8 -webkit- 12 -o-

12.5

http://j.mp/c-animation
http://caniuse.com/#feat=css-animation

Transforms, Transitions, and Animation

571

Property IE Firefox Safari Chrome Opera

 “bounce”² 10 5 -moz-

16

- ³ 16 -webkit-³ 12 -o-

12.5

Animation-delay 10 5 -moz-

16

4 -webkit- 1 -webkit- 12 -o-

12.5

Animation-iteration-count 10 5 -moz-

16

4 –webkit- 1 -webkit- 12 -o-

12.5

Animation-direction 10 5 -moz-

16

4 -webkit- 1 -webkit- 12 -o-

12.5

Animation-fill-mode 10 5 -moz-

16

4 -webkit- 1 -webkit- 12 -o-

12.5

Animation-play-state 10 5 -moz-

16

4 –webkit- 1 -webkit- 12 -o-

12.5

Animation 10 5 -moz-

16

4 -webkit- 1 -webkit- 12 -o-

12.5

@keyframes 10 5 -moz-

16

4 -webkit- 1 -webkit- 12 -o-

12.5

1. This covers support for basic cubic Bézier-based timing functions.

Chapter 12

572

2. steps() (plus the presets step-start and step-end), and Y values outside 0-1 for cubic-bezier
values (“bounce”), are comparatively recent additions to the spec.

3. In Chrome cubic-bezier timing functions with “bounce” work when animating between the same
units. They don’t work in Safari 5.1.2.

4. WebKit browsers only support integer values and infinite for animation-iteration-count; non-
integer number values are treated as 1.

5. WebKit browsers can sometimes show a flash of default-styled content when a paused animation
resumes, although this appears to be fixed in recent versions.

6. While it claims to support animations, Android 2.13-3 can only animate a single property. Android
4+ works as expected.

As we need to use browser prefixes for both animation-* properties and @keyframes blocks, with three
rendering engines plus the unprefixed version this quickly becomes a lot of code. However, remember
your Good CSS Developer pledge! If you use prefixed properties, when another browser adds prefixed
support you’ll need to add it in. And if the spec changes you’ll need to update your code.

A little animation-related JavaScript detour

As with transforms, adding animations means we have to decide what to do about non-supporting
browsers. For small animations that merely add visual flair, we think that no fallback is perfectly
acceptable. However, if you’re making animations a central part of your experience, you’ll have to make
some decisions. This includes what technology you want to use, as in addition to CSS animations,
JavaScript, Canvas, SMIL plus SVG, and even Adobe Flash are all capable, each with their own pros and
cons.

The easiest way (after reading this chapter) will probably be to use CSS animations where supported, with
a JavaScript equivalent fallback. Happily, there are a lot of frameworks you can use, including

 jQuery’s native Effects (http://j.mp/jq-effects, http://api.jquery.com/
category/effects/) (basic) or jQuery UI (http://jqueryui.com/)

 jQuery plugins like jquery.transition.js* by Louis-Rémi Babé (http://j.mp/jq-transition,
https://github.com/louisremi/jquery.transition.js/) or jQuery.animate-enhanced.js* by Ben Barnett
(http://j.mp/jq-animate, https://github.com/benbarnett/jQuery-Animate-Enhanced)

 YUI Transition library* (http://j.mp/yui-transition, https://yuilibrary.com/
yui/docs/transition/)

 $fx() (http://fx.inetcat.com/)

http://j.mp/jq-effects
http://api.jquery.com/
http://jqueryui.com/
http://j.mp/jq-transition
https://github.com/louisremi/jquery.transition.js/
http://j.mp/jq-animate
https://github.com/benbarnett/jQuery-Animate-Enhanced
http://j.mp/yui-transition
https://yuilibrary.com/
http://fx.inetcat.com/

Transforms, Transitions, and Animation

573

 scripty2 (http://scripty2.com/) and script.aculo.us (http://script.aculo.us/) (both based on
Prototype)

Some of these (indicated with an asterisk) are polyfills and automatically convert your animation CSS to a
JavaScript equivalent if the browser doesn’t support it natively. Others will require a little simple scripting,
plus Modernizr to detect browser support. For more on doing this, Addy Osami has written the informative
article “CSS3 Transition Animations With jQuery Fallbacks” (http://j.mp/jq-fallback,
http://addyosmani.com/blog/css3transitions-jquery/).

For anything more than basic CSS3 animations, a little JavaScript generally helps; the more advanced you
want to get, the more you’ll probably need. Combining CSS animations with JavaScript also broadens your
horizons, allowing you to

 Expand on CSS3 Animation’s native abilities, for example Isotope by David DeSandro
(http://j.mp/jq-isotope, http://isotope.metafizzy.co/) or the iDangero.us jQuery Chop Sliders
(http://j.mp/jq-cs, www.idangero.us/cs/).

 Receive events for each keyframe, such as using Joe Lambert’s CSS3 Animation Keyframe
Events JavaScript library (http://j.mp/cssa-events, www.joelambert.co.uk/cssa/).

 Create, access, and modify animations (http://j.mp/anim-store,
http://blog.joelambert.co.uk/2011/09/07/accessing-modifying-css3-animations-with-javascript/)
using Joe Lambert’s CSS Animation Store.

Another article worth your time is Dan Mall’s “Real Animation Using JavaScript, CSS3, and HTML5 Video
from 2010’s 24 Ways” (http://j.mp/24-anim, http://24ways.org/2010/real-animation-using-javascript-css3-
and-html5-video). This article and “The Guide To CSS Animation: Principles and Examples” by Tom
Waterhouse (http://j.mp/anim-principles, http://coding.smashingmagazine.com/2011/09/14/the-guide-to-
css-animation-principles-and-examples/) cover how to make your animations feel more natural—useful
advice even if you’re doing pure CSS animations.

Animation gotchas

Here are some assorted things to watch out for when using CSS animations.

 Check you’re trying to animate properties that can be animated, and check these properties can
be animated on the element you’re targeting. For example, as with CSS transforms, WebKit
browsers can’t animate an element with display: inline;, although Firefox can. In this case, the
workarounds are to use display: inline-block; or see if it’s possible to achieve the same result with
CSS transitions, which do work on inline elements.

 At the time of writing only Firefox 4 and above can transition and animate CSS generated
content, such as the CSS in below:

http://scripty2.com/
http://script.aculo.us/
http://j.mp/jq-fallback
http://addyosmani.com/blog/css3transitions-jquery/
http://j.mp/jq-isotope
http://isotope.metafizzy.co/
http://j.mp/jq-cs
http://www.idangero.us/cs/
http://j.mp/cssa-events
http://www.joelambert.co.uk/cssa/
http://j.mp/anim-store
http://blog.joelambert.co.uk/2011/09/07/accessing-modifying-css3-animations-with-javascript/
http://j.mp/24-anim
http://24ways.org/2010/real-animation-using-javascript-css3-and-html5-video
http://24ways.org/2010/real-animation-using-javascript-css3-and-html5-video
http://j.mp/anim-principles
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/
http://coding.smashingmagazine.com/2011/09/14/the-guide-to-css-animation-principles-and-examples/

Chapter 12

574

div:before {

 content: "";

 position: absolute;

 left: 0;

 width: 44px;

 height: 44px;

 -webkit-animation: moveit 3s ease-in-out infinite alternate;

 -moz-animation: moveit 3s ease-in-out infinite alternate;

 -ms-animation: moveit 3s ease-in-out infinite alternate;

}

 If your animation isn’t working and doesn’t have a from {…}/0% {…} or to {…}/100% {…}
keyframe, try adding one, making sure the values are different to the element’s default styles.

 You can’t apply an animation to the same element twice, such as on load and via the :hover
states. The workaround is to duplicate the animation’s @keyframes declaration with a different
name.

 More generally, while animation is new and exciting, it’s new enough that there are still a lot of
browser bugs being found, and performance may not be what you hope. If your animation is
performing badly, try dialing it back a bit and making it simpler. If it doesn’t work at all, check that
your syntax is valid using the browser’s inspector or try making a simpler version to test. If you
suspect a bug, search the browser bug trackers, especially if you are trying something out of the
ordinary. If you find a bug, make sure to do your bit and report it (http://j.mp/report-bugs,
http://coding.smashingmagazine.com/2011/09/07/help-the-community-report-browser-bugs/)!

CSS animations in summary

We have to admit it, CSS animations are the CSS equivalent of your favourite overly rich dessert—they’re
just irresistibly delicious! For example, Cameron Adams’ use of CSS animations (together with transforms
and transitions) as part of his amazing title sequences for the Web Directions South 2010 (http://j.mp/wds-
2010, http://themaninblue.com/writing/perspective/2010/10/18/) and 2011 conferences
(http://j.mp/wds2011, http://themaninblue.com/writing/perspective/
2011/10/27/) (Figure 12-35) was just spell-binding—cinematic experiences done entirely using the web
stack to demonstrate what browsers can now do.

http://j.mp/report-bugs
http://coding.smashingmagazine.com/2011/09/07/help-the-community-report-browser-bugs/
http://j.mp/wds-2010
http://j.mp/wds-2010
http://themaninblue.com/writing/perspective/2010/10/18/
http://j.mp/wds2011
http://themaninblue.com/writing/perspective/

Transforms, Transitions, and Animation

575

Figure 12-35. Web Directions South 2011 title sequence, done by the Man in Blue using CSS3, HTML5, and
JavaScript, and projected using two computers synced using WebSockets.

However, after mentioning Cameron’s mind-blowing work, we’d be remiss not to talk about using the right
tool for the job. CSS3 animations are good for enhancing content. For making animated content you’re
probably better off looking at canvas, SMIL+SVG, WebGL, or Flash.

As far as using CSS animations now, as the browser support table indicates it’s premature to rely on them
unless you’ve also got fallback strategies in place for other browsers. As usual, Modernizr can help you
with this. However, when used like transitions as progressive enhancement to smooth the user experience
and add visual flourishes, we say they’re fine to use right now.

You may be tempted to overdose on these sugary treats, but we advise restraint. Movement is very
noticeable and should be used cautiously and with restraint. As with transforms and transitions, animation
can be a performance hog, even in a modern browser. Our advice is you only need a sprinkle, and too
much will leave your users queasy.

Putting it all together

We’ll leave you with a few amazing sites that really make use of these specs. They’re a bit intimidating to
“View source…” on, but a great example of what’s possible.

Steven Wittens’ website Acko.net (Figure 12-36) uses 3D transforms plus JavaScript to animate the page
in 3D as you scroll down. The 3D transforms are controlled using Mr.doob’s Three.js JavaScript library

Chapter 12

576

(http://j.mp/three-js, http://mrdoob.github.com/three.js/). As support for 3D transforms is limited, there’s a
static image fallback for non-supporting browsers. The implementation writeup is also excellent.

Figure 12-36. 3D Transformed Acko.net on load by Steven Wittens (http://j.mp/3d-acko, http://acko.net/blog/making-

love-to-webkit/)

When Apple introduced the iPhone 4S (Figure 12-37) the web page was beautifully executed, with the
images and text for the six marketing points gracefully sliding on and off the screen. It worked by
positioning all the elements in a <div> stage much larger than the screen (3200px × 3900px), of which we
see only a fraction. Individual elements plus the stage are then moved with 2D transforms plus transitions,
using the Script.aculo.us JavaScript library to control everything by adding inline styles. It also degrades
nicely with a slideshow-style fade for non-supporting browsers.

http://j.mp/three-js
http://mrdoob.github.com/three.js/
http://j.mp/3d-acko
http://acko.net/blog/making-love-to-webkit/
http://acko.net/blog/making-love-to-webkit/
http://acko.net/blog/making-love-to-webkit/

Transforms, Transitions, and Animation

577

Figure 12-37. Apple Inc.’s expertly produced “hero” animation for the iPhone 4S

Anthony Calzadilla explains this in “CSS3 Animation Explained: Apple’s iPhone 4S Feature Page”
(http://j.mp/iphone-expl, www.anthonycalzadilla.com/2011/10/css3-animation-explained-apples-iphone-4s-
feature-page/), but it’s John Hall’s explanation animation (http://j.mp/iphone-anim,
http://johnbhall.com/iphone-4s/) showing the stage and frame that really reveals the animation’s secrets.
While this looks like CSS animation, we suspect transitions were used for their wider browser support.

Further Reading

Transforms, transitions, and animations can be complex, so here are some links for further reading.

 “2D Transforms in CSS3” by John Allsopp (http://j.mp/wxmbT2, www.webdirections.org/
blog/2d-transforms-in-css3/)

 Understanding CSS3 2D Transforms by Klemen Slavič (http://j.mp/x7QcUR,
http://msdn.microsoft.com/en-us/scriptjunkie/gg709742)

http://j.mp/iphone-expl
http://www.anthonycalzadilla.com/2011/10/css3-animation-explained-apples-iphone-4s-feature-page/
http://www.anthonycalzadilla.com/2011/10/css3-animation-explained-apples-iphone-4s-feature-page/
http://www.anthonycalzadilla.com/2011/10/css3-animation-explained-apples-iphone-4s-feature-page/
http://j.mp/iphone-anim
http://johnbhall.com/iphone-4s/
http://j.mp/wxmbT2
http://www.webdirections.org/
http://j.mp/x7QcUR
http://msdn.microsoft.com/en-us/scriptjunkie/gg709742

Chapter 12

578

 Using 2D and 3D Transforms, in Apple’s Safari Developer Library (http://j.mp/xNNVgK,
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEff
ectsProgGuide/Using2Dand3DTransforms/Using2Dand3DTransforms.html#//apple_ref/doc/uid/T
P40008032-CH15-SW16)

 “Intro to CSS 3D transforms” by David DeSandro (http://j.mp/zcuGcr,
http://desandro.github.com/3dtransforms/)

 Understanding CSS 3D Transforms series by Dirk Weber, including parts 2 (3D matrix) and 3
(natural rotation with JavaScript) (http://j.mp/AvL3Of, www.eleqtriq.com/2010/05/
understanding-css-3d-transforms/)

 “Understanding CSS3 Transitions” by Dan Cederholm (http://j.mp/AwWDCP,
www.alistapart.com/articles/understanding-css3-transitions/)

 “Let the Web move you — CSS3 Animations and Transitions” by John Allsopp
(http://j.mp/AncW08, www.webdirections.org/blog/let-the-web-move-you-css3-animations-and-
transitions/)

 “Using CSS3 Transitions, Transforms and Animation” by Rich Bradshaw (http://j.mp/wrpwop,
http://css3.bradshawenterprises.com/)

 “CSS3 Transition Animations With jQuery Fallbacks” by Addy Osmani
(http://addyosmani.com/blog/css3transitions-jquery/)

 “A masterclass in CSS animations” by Estelle Weyl (http://j.mp/y1iWsB,
www.netmagazine.com/tutorials/masterclass-css-animations)

 Animating With Keyframes, in Apple’s Safari Developer Library (http://j.mp/xEl6On,
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEff
ectsProgGuide/AnimatingWithKeyframes/AnimatingWithKeyframes.html#//apple_ref/doc/uid/TP40
008032-CH14-SW5)

 Replacing Subtle Flash Animations with CSS3 by Louis Lazaris (http://j.mp/zFYPEh,
www.impressivewebs.com/replace-flash-with-css3-animation)

 “JavaScript: Controlling CSS Animations” by Duncan Crombie (http://j.mp/wNXyJU, www.the-art-
of-web.com/javascript/css-animation/)

 Adding Interactive Control to Visual Effects, in Apple’s Safari Developer Library (covers making
Transforms and Transitions usable on touch devices) (http://j.mp/ygau6U,
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEff
ectsProgGuide/InteractiveControl/InteractiveControl.html#//apple_ref/doc/uid/TP40008032-CH16-
SW7)

http://j.mp/xNNVgK
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEff
http://j.mp/zcuGcr
http://desandro.github.com/3dtransforms/
http://j.mp/AvL3Of
http://www.eleqtriq.com/2010/05/
http://j.mp/AwWDCP
http://www.alistapart.com/articles/understanding-css3-transitions/
http://j.mp/AncW08
http://www.webdirections.org/blog/let-the-web-move-you-css3-animations-and-transitions/
http://www.webdirections.org/blog/let-the-web-move-you-css3-animations-and-transitions/
http://j.mp/wrpwop
http://css3.bradshawenterprises.com/
http://addyosmani.com/blog/css3transitions-jquery/
http://j.mp/y1iWsB
http://www.netmagazine.com/tutorials/masterclass-css-animations
http://j.mp/xEl6On
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEff
http://j.mp/zFYPEh
http://www.impressivewebs.com/replace-flash-with-css3-animation
http://j.mp/wNXyJU
http://www.the-art-of-web.com/javascript/css-animation/
http://www.the-art-of-web.com/javascript/css-animation/
http://www.the-art-of-web.com/javascript/css-animation/
http://j.mp/ygau6U
http://developer.apple.com/library/safari/#documentation/InternetWeb/Conceptual/SafariVisualEff

Transforms, Transitions, and Animation

579

 Taking Presentation out of JavaScript One Setinterval at a Time, a presentation by Divya Manian
(slides: http://nimbu.in/txjs/, video: http://vimeo.com/26844734).

Here are some tools that make understanding CSS transforms, transitions, and animations easier, and
that help you generate the code required.

 2D Transforms tool by John Allsopp (http://j.mp/wvUNey, http://westciv.com/tools/transforms/)

 3D Transforms tool by John Allsopp (http://j.mp/zIess7, http://westciv.com/tools/3Dtransforms/)

 Animations tool by John Allsopp (http://j.mp/wi3lcQ,http://westciv.com/tools/animations/)

 CSS 3D Transforms Explorer by Dirk Weber (linked from Understanding CSS 3D Transforms)
(http://j.mp/ydQy2f,www.eleqtriq.com/wp-content/static/demos/2010/css3d/css3dexplorer.html)

 Matrix 2D Explorer by Dirk Weber (linked from The Matrix Revolutions) (http://j.mp/xxZSDR,
www.eleqtriq.com/wp-content/static/demos/2010/css3d/matrix2dExplorer.html)

 Matrix 3D Explorer by Dirk Weber (linked from The Matrix Revolutions) (http://j.mp/yDSc7q,
www.eleqtriq.com/wp-content/static/demos/2010/css3d/matrix3dexplorer.html)

http://nimbu.in/txjs/
http://vimeo.com/26844734
http://j.mp/wvUNey
http://westciv.com/tools/transforms/
http://j.mp/zIess7
http://westciv.com/tools/3Dtransforms/
http://j.mp/wi3lcQ
http://westciv.com/tools/animations/
http://j.mp/ydQy2f
http://www.eleqtriq.com/wp-content/static/demos/2010/css3d/css3dexplorer.html
http://j.mp/xxZSDR
http://www.eleqtriq.com/wp-content/static/demos/2010/css3d/matrix2dExplorer.html
http://j.mp/yDSc7q
http://www.eleqtriq.com/wp-content/static/demos/2010/css3d/matrix3dexplorer.html

